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Closed-Form Analytical Solution for the Shimmy Instability
of Nose-Wheel Landing Gears
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Closed-form analytical expressions for the shimmy velocity and shimmy frequency are obtained, considering the
lateral dynamics of a three-degree-of-freedom nose-wheel landing gear shimmy model. The analytical solution is
based on the observation that the lowest modal frequency of the nose-wheel landing gear on the ground gives a close
approximation to the shimmy frequency. Results are obtained for the shimmy frequency and shimmy velocity using
these analytical expressions for a range of values of landing gear parameters and compared with the results obtained
using an exact solution of the more general formulation. These results show that the analytical expressions can be
used as a good first-cut approximation of the critical stability values for use at the early design stage.

Nomenclature

(o = equivalent structural damping coefficient of the strut

~ in lateral bending

Cy = nondimensional structural lateral damping
coefficient of the strut

Csn = equivalent viscous damping coefficient in torsion

~ (from the shimmy damper)

Cqn = nondimensional viscous damping coefficient in
torsion

Ca = lateral damping of the tire

Ca = nondimensional lateral damping of the tire

Cy = equivalent structural damping coefficient of the strut

_ in torsion

Cy = nondimensional structural damping coefficient of
the strut in torsion

Fy = side force due to lateral flexibility and damping of
the tire

K = lateral stiffness of the landing gear strut

Ka = lateral stiffness of the tire

K, = nondimensional lateral stiffness of the tire

Ky = torsional stiffness of the landing gear strut

1 = moment of inertia of the wheel-strut assembly about

_ the gear vertical axis

1 = nondimensional moment of inertia

L = distance of the axis of the wheel rotation from the

~ gear vertical axis (caster length)

L = ratio of the caster length to the distance of the center
of gravity of the wheel assembly from the gear
vertical axis

L, = distance of the center of gravity of the wheel
assembly from the gear vertical axis

m = mass of the wheel assembly

s = Laplace variable

s = nondimensional Laplace variable

t = dimensional time
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landing gear forward velocity

nondimensional velocity

tire contact point velocity (velocity of tire slip)
lateral displacement of the strut

nondimensional lateral displacement of the strut
lateral displacement of the tire

nondimensional lateral displacement of the tire
rotation of the wheel about the gear vertical axis
real part of s, modal damping

nondimensional time

ratio of landing gear strut torsional frequency to
lateral frequency

modal circular frequency

nondimensional modal circular frequency
uncoupled landing gear strut lateral circular
frequency

uncoupled landing gear strut torsional circular
frequency

coupled landing gear strut (resting on the ground)
circular frequencies
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HE dynamics of nose-wheel landing gear (NLG) systems

consists of 1) uncoupled symmetric longitudinal dynamics
involving fore and aft and up and down motions and rotation about the
lateral axis at the root of the landing gear strut and 2) uncoupled lateral
dynamics that involve lateral motion, rotation of the wheel assembly
about the fore and aft axis at the root of the strut, swiveling of the
wheel assembly, and lateral and yaw deformations of the tire. Shimmy
of the NLG is a self-excited dynamic lateral instability that may occur
during takeoff, taxiing, and landing, involving mainly three vibratory
motions: lateral displacement of the strut, rotation of the wheel
assembly about the vertical axis (yaw), and rotation about the fore and
aft axis (roll). Over the years, NLG shimmy has been studied by a
number of authors [1-9]. However, studies covering the effect of
various problem parameters on the onset of shimmy have been limited
[1-6]. For such studies, simplified analytical models that capture the
basic system characteristics are very suitable. Reference [1] presents
studies on such a simplified three-degree-of-freedom (3-DOF) NLG
model. In this reference, a linear NLG model with single-wheel
configuration was considered, accounting for structural inertia,
stiffness, and damping. Further, it was assumed that the tire is only
laterally flexible, the interaction between the ground and the tire
occurs at a single point, and the tire does not skid with respect to the
ground. In this study, the force-deflection characteristics of the tire
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was based on Moreland’s point-contact model [5-9] and was
represented by a linear mathematical relationship expressing the side
force acting on the wheel as a linear function of the lateral tire
deflection and the rate of its change with time.

This paper presents closed-form analytical solutions for the
shimmy frequency and shimmy velocity for the 3-DOF linear NLG
model considered in [1]. An analysis of the results presented in []]
shows that the shimmy instability occurs at a frequency (shimmy
frequency) very close to the lowest natural frequency of the NLG
resting on the ground. The tire in contact with the ground provides
effective additional stiffness for the lateral and torsional motions of
the NLG. Based on this observation, using the closed-form analytical
expression for the lowest natural frequency of the NLG on the
ground, it is shown that the stability formulation for the 3-DOF linear
NLG model yields a closed-form analytical expression for the
shimmy velocity.

II. Analytical Formulation

Figures laand 1b, respectively, show a typical NLG configuration
[10] and a schematic representation of the same as a cantilever
supported from the fuselage. The landing gear flexibility may cause
fore and aft motion in the x direction and lateral motion in the y
direction. The vertical motion in the z direction is absorbed by the
oleopneumatic shock absorber. Landing gear may also rotate about
the fore and aft axis (x axis) because of lateral bending. The wheel is
free to swivel about the vertical axis when the steering is not engaged.
This DOF helps with steering the aircraft. The steering moment is
transferred to the wheels using a rack-and-pinion mechanism
through a torque link. The steering is assumed to be hydraulically
controlled and incorporated with two spring-loaded hydraulic
steering cylinders that serve as a steering mechanism and are also
used to subdue torsional oscillations automatically. The damping is
accomplished by the metering of hydraulic fluid through a small
orifice between two cylinders. In the present study, the NLG is
assumed to be equipped with such a damping mechanism. The
schematic of such a steering mechanism is shown in Fig. 1c. The
NLG model considered for the present paper accounts for structural

Fig. 2 Three-degree-of-freedom NLG shimmy model.

Figure 2 shows the schematic of the 3-DOF NLG model with
lateral displacement of the wheel y, angular wheel motion (yaw)
about the vertical axis 6, and lateral deflection of the tire contact patch
with respect to the wheel center plane A as degrees of freedom [1]. It
is assumed that the mass of the swivel wheel assembly m is lumped at
the center of gravity (cg) of the wheel assembly. Let / be the moment
of inertia of the wheel-strut assembly about the gear vertical axis, let
L be the distance of the axis of the wheel rotation from the gear
vertical axis (caster length), and let L, be the distance of the center of
gravity of the wheel assembly from the gear vertical axis. Let K¢ and
Cy, respectively, represent the stiffness and equivalent structural
damping coefficient of the NLG strut in lateral bending, let K, and Cy
represent the same in torsion, and let K, and C, represent lateral
stiffness and lateral damping coefficient of the tire, respectively. Let
Cg;, be the coefficient of equivalent viscous damping in torsion
provided by an external means (the shimmy damper), in addition to
the structural damping Cy.

Let Fy be the side force acting on the wheel due to tire lateral
deformation A. Assuming 6 to be small (cos & = 1 and sin 6§ = ) and
that there is no tire slippage with respect to the ground, the equations
of motion [1] for the 3-DOF NLG model can be written as

inertia, stiffness, and structural damping. The torsional stiffness of d?y I d?6 dy % Fo—0 |
the strut is the resultant of stiffness offered by the torque link, the maz T Ml a2 +GCs dr TRy +Ey= @
hydraulic spring in the steering actuator, and the structure above the
torque link, including the retraction jack. The damping of the system 20 * a0
is assumed to result from the inherent structural damping in lateral I— +mL, % +(Cop+Cq)—+ K0 +FyL=0 (2)
and torsional DOF and external viscous damping in torsional DOF dr dr dr
coming from the steering damping mechanism. The landing gear
nonlinearities such as nonlinear lateral strut flexibility, friction in the dy 40  dA
oleostrut, free play in the steering, and nonlinear tire behavior are Vo + PP P 0 (3)
ignored.
Fuselage
Fuselage —
z Shimmy
4 Damper
T x <J\
v <+—— Rack
Torque
Link
le— L
a) Typical aircraft NLG b) Schematic of NLG ¢) Rack-and-pinion steering mechanism

showing torsional DOF with shimmy damper

Fig. 1 Details of the NLG components and its schematic representation.
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Equation (3) represents the kinematic condition that represents
zero tire lateral slip with respect to the ground (i.e., Vi =0).
According to Moreland’s point-contact model, the interaction
between the ground and the tire could be treated as occurring at a
single point, and the elastic restoring effect of the tire on the wheel
(i.e., side force Fy) is assumed to be linearly proportional to the
lateral deflection of the tire A and to the rate of its change with time
dA/dt. Thus, Fy is given by

dA
FNZKAA_FCAE )

Defining w? = (Ks/m), @} = (K,/1), and the following nondimen-
sional parameters,

_y - A - L - 1
==, A:—, L:—’ I:—7 =
YTL L L mL? T
) - Vv - K = C
Q=—", V=— A=, Cr=—>
wg wsL mwy mwg
= _ G a_ G - _ Ca
mwg’ T mLlwg ST mL2wg
®

Equations (1—4) can be written in a nondimensional form as

Y+ LO+Cy+y+ K\A+C,A=0 ©)

LY4+T0+(Cy+ Cs)0 + IQ20+ K\A + CAA=0 (7)

y+60+VO—A=0 (8)

In the preceding equations, single and double dots over the
quantities represent the first and second derivatives with respect to
the nondimensional time parameter t. Equations (6—8) represent the
dynamics of the 3-DOF system in a nondimensional form. The
stability of the system can be studied by solving for complex
eigenvalues of the system computed at various velocities.
Equations (6-8) can be written in the Laplace domain in terms of
nondimensional Laplace variable s as

(52 +5Cs 4+ 1)j + 52LO+ (Ko +5CA)A =0 ©)

S2L 5 +(2 + 5Cy + 5Cq, + I22)0 + (Ko +5C)A =0 (10)

5SG+0—A)+VO=0 an

We can get the characteristic equation by substituting A from
Eq. (11) into Egs. (9) and (10) as

_ _ _ - -Rps\ |-
[(52 +5Cs+ 1)+ FLRys + (Ko +ECA)(1 + Rgs + V%)]y
=0 (12)

where

A4 (Cs+ Car+ Ky +1
J2L + Cad + Ky

MI+(Cy+ Co+ CAL+IQ2 + K,

B (3> 4+ 5Cs + 1 — 5°L)
T (214 5Cy + 5Cq, + 192 — 52L)

Ros 13)

By substituting Eq. (13) in the preceding characteristic equation
and solving it for complex eigenvalues, we get five characteristic
roots as

)\,]_2=O_-1 :l:l.(,z)l, )\.3V4=O_-2:tl.(1_)2, )\.5 =O_-3 (14)
where 7, 0,, and 0; represent modal damping of the natural modes
of the system, and @, and w, represent the modal frequencies. At the
point of instability (critical condition), one of the real part o, , of the
preceding complex conjugate roots becomes zero and we have
A = i@¢,;, where @, is the critical shimmy frequency. At the critical
condition, because the value of 0 = 0 and 5 = iw(,, the system will
have a steady-state response. Substituting for § = iw¢, in Eq. (12), a
closed-form expression for shimmy velocity V¢, can be obtained in
terms of shimmy frequency @c, as

VCr
— ifg (1— @2, + idc,Cs) —_a_)%rL_Rey ‘f: (Ka + i@ Cp) (14 Ryy)
(Ka + iwc,Cp)Rys
(15)
where
. [(L = D, + iCsive, + 1] 16)

(L — D@}, + i(Cy + Csp)ae, + 197

A preliminary analysis of the numerical results obtained for the
shimmy instability of the NLG model showed that shimmy occurs at
a frequency slightly higher than the lowest natural frequency of the
NLG off the ground. Considering the NLG resting on the ground and
accounting for the contribution of the tire to lateral stiffness and
damping, it is seen that the shimmy frequency is very close to the
lowest natural frequency of the NLG on the ground. Using the
explicit analytical expression for the lowest natural frequency of the
NLG system on the ground for the value of the shimmy frequency in
Eq. (15), we get an explicit analytical expression for shimmy
velocity.

When the landing gear is resting on the ground without forward
motion, setting V = 0, the nondimensional equations of motion of
the 3-DOF NLG model given by Egs. (6-8) can be reduced to

F+(Cs+Ca)y+ (0 +K)¥+LO+CA0+K0=0 (17)

L3 +Coy + Ka3 +10+(Cy+ Cgy + Cp)0
+ QP+ KA)0=0 (18)

For V = 0, the no-slip condition given by Eq. (8) yields A = ﬁ and
the system reduces to a 2-DOF system. For this case, the solution can
be obtained as y = yye*™ and O = ye**, and for the nontrivial
solution of y and 6, we have

ML+ Cah+ K,y ] 0 (19)
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The solutions of the preceding equation can be obtained [as in
Eq. (14)] as
Aip =0 £iw, A3q =0, £ i, (20)
where @, and w, represent damped natural frequencies of the two
modes, and ¢, and &, represent the respective modal damping. It is
also observed from [1] that for all values of Cg,, the shimmy
frequency is approximately equal to coupled lateral strut frequency
and the shimmy frequency decreases marginally with an increase in
viscous damping. If damping is ignored, the solution for Eqs. (17)
and (18) can be obtained as y = y,e'® and 6 = ,e'®", and for
nontrivial solution of ¥ and 6, we have

—&*L + K,

-+ (14+Ky) -a’L )
—@* + 1Q%r + K

—@*L + K, ”20 @b

The solution of the preceding equation will yield the undamped
natural frequencies and mode shapes of the 2-DOF coupled system.
The roots of the preceding characteristic equation are given by

_ AKa(L+T-20)]+1(1 4+ 2%}
Wy = ==
2(1 - L)
N ([KA(I + i—gi)_+ 11+ Q)P
4(I — L*)?
QA+ KA1+ IQH\ 2
(I-L )

(22)

It is observed [1] that the shimmy frequency of the NLG is very
nearly equal to the lower of the two natural frequencies of the NLG
system on the ground, the analytical expression for shimmy
frequency @c, (nondimensional) can be obtained from Eq. (22) as

2(1 - p)os

—[(Q 4+ 1+2pBQ) —4(1 —Q)(1 — ﬁ)]“/2>} (23)

Doy ~ By :L{(Q/ T+ 1+42ppQ)

where
S (KL - ()
I (Ks+ Ka)(Kg+ KpL?)' Wi
Ks+ Ky Ko+ K\L?
==t o= (24)

Critical shimmy velocity of the preceding 3-DOF NLG model can
be obtained by substituting the preceding analytical expression for
critical shimmy frequency given by Eq. (23) into the analytical
expression for critical shimmy velocity given by Eq. (15).

III. Results and Discussion

The studies presented here consider the baseline values of various
problem parameters for a typical nose-wheel landing gear
configuration of a fighter class of aircraft, as given in Table 1. The
effect of variation of some of the problem parameters is also
presented for a range of values, as given in Table 1.

Free-vibration analysis of the NLG model is carried out, setting
forward velocity to zero for the baseline values of problem
parameters. When the tire is not in contact with the ground, the
uncoupled lateral and torsional frequencies obtained, ignoring inertia
and stiffness coupling, are 25 and 75 Hz, respectively. When the
effect of inertia and stiffness coupling is considered, these
frequencies are, respectively, 29.62 and 93.88 Hz. For this case, it is
observed that the shimmy frequency is very close to 29.62 Hz.
Figure 3 shows modal frequencies for various values of torsional
stiffness parameter 2 obtained using the analytical expression given
by Eq. (22) for the baseline values of the NLG configuration
compared with those of the shimmy frequency at the onset of

Table 1 Values of the NLG parameters for 3-DOF baseline problems
and their ranges

Baseline values of NLG parameters
Strut inertia parameters m =22 kg and I, = 0.198 kgm?
Strut geometric parameters L =0.075 m and L., = 0.0675 m
Strut stiffness parameters Ky =542.83 kN/mand Q =3
Strut damping parameters Cy=0.01,C, =0.02, and Cg, =0
Tire parameters K, =238.75 kN/m and C, = 205 Ns/m
Range of values of NLG parameters

V = 0-300 kmph
Cg, = 0-100 Nms/rad
Q=03

Forward velocity
Shimmy damping
Strut stiffness

instability obtained from the complex eigenvalue approach [1] (exact
solution). For the entire range of 2 shown in Fig. 3, it can be seen that
the lowest modal frequency obtained from the analytical expression
matches closely with the shimmy frequency.

Results were obtained for the shimmy frequency and shimmy
velocity using the analytical expressions given by Eqs. (23) and (15),
respectively, and compared with those obtained from the exact
solution. Figures 47 show a comparison of variation of € with the
shimmy velocity and shimmy frequency for the range of values of
torsional stiffness parameter €2 = 0-3 for the shimmy damping
values Cg, = 0, 25, 50, and 100 Nms/rad, respectively. Figures 8
and 9 show similar comparison of the variation of the shimmy
velocity with the shimmy damping parameter Cg, for Q =2 and
Q = 3, respectively. It can be observed from these results that for the
values of Cg;, up to 50 Nms/rad and for values of © up to 3, the error
in the calculation of the shimmy velocity is less than 4% and the
values are on the conservative side. For the case of Cg, = 100 (see
Fig. 7) at Q = 1.6, 2% error in the shimmy frequency results in
approximately 11% error in the shimmy velocity. Table 2 shows the
shimmy velocity for various values of €2 and shimmy damping Cg,
(in terms of percentage of critical damping in torsion) obtained from
the exact solution (ES) and analytical expression (AE), along with
the percentage error in the results obtained from the analytical
expression (PeAE). However, for most practical cases, when 2 > 2
and Cygy, is in the range of 25 to 50 Nms/rad, the error in the shimmy
velocity obtained from the analytical expression is less than 2%.

The analytical expression for the shimmy velocity represented by
Eq. (15) yields, in general, complex values for the shimmy velocity
when an arbitrary value is assigned to the shimmy frequency. If the
exact value of the shimmy frequency is substituted into Eq. (15), the
imaginary component will become zero and the expression gives the
shimmy velocity as areal value. If the value of the shimmy frequency

100 T T
©,/2% - Analytical Expression H H
------ 6)2/21 - Analytical Expression
80 f +++eee O, /27 - Shimmy Frequency

H
H 1
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A H 1
L 1 S T T LT T EEEE o T T -
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Fig. 3 Comparison of modal frequencies obtained using analytical

expressions (at V = 0) with that of shimmy frequency obtained using an
exact solution for baseline configuration.
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Table 2 Comparison of shimmy velocity V¢, (kmph) for various values of 2 and Cy,, obtained from the exact solution and analytical expression.

% critical damping Q=1 Q=2 Q=3
Cgy, Nms/rad Q=1 Q=2 Q=3 ES AE PeAE ES AE PeAE ES AE PeAE
0 0 0 0 17.0 16.9 0.60 99.7 96.5 3.21 255.1 245.1 3.92
25 9 6 3 78.3 78.2 0.14 116.5 116.4 0.08 259.5 255.5 1.54
50 18 12 6 140.0 139.8 0.14 137.4 136.1 0.95 266.8 266.1 0.26
100 36 24 12 264.7 262.8 0.72 190 175 8.00 288.3 287.2 0.38

used is an approximate value, as given by Eq. (23), Eq. (15) yields the
shimmy velocity with a small residual imaginary component on the
order of 1073 or lower in comparison with the real part. The accuracy
of the shimmy velocity computed using the analytical expression
depends on the input value of the shimmy frequency. When the
experimental values are available for the natural frequencies of the
NLG system on the ground, these values can be directly used for
getting an estimate of the shimmy velocity.

IV. Conclusions

Using a simplified formulation for a 3-DOF linear NLG shimmy
model, closed-form analytical expressions for the shimmy velocity
and shimmy frequency were obtained. For all practical cases, when the
torsional frequency of the NLG is more than two times the lateral
frequency, the closed-form analytical expression gives an accurate
estimate of the shimmy velocity, with an error of less than 2% when the
lowest undamped natural frequency is used as the shimmy frequency.
Hence, these closed-form analytical expressions obtained for the
shimmy frequency and shimmy velocity can be used as a good first-cut
approximation of the critical stability values at the early design stage.
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